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Abstract

A theorem of G.D. Birkhoff states that a spherically symmetric space–time with vanishing Ricci tensor admits a Killing field
beyond those given by the spherical action and thus it is static under an additional condition motivated by the exterior Schwarzschild
space–time. Several generalizations of this result were obtained for spherically symmetric space–times and also for such more
general ones where an isometric action of a 3-dimensional Lie group with orbits of maximal dimension 2 is given. It seems,
however, that a complete account of those space–times where such a generalized theorem holds fails even now. A construction of
all those spherically symmetric space–times is presented below where a generalization of Birkhoff’s theorem holds.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The first generalization of Birkhoff’s theorem [2] was obtained by Cahen and Debever who extended its validity
in two senses: firstly, instead of spherically symmetric ones they considered space–times where an isometric action of
a 3-dimensional Lie group with non-lightlike orbits of maximal dimension 2 is given; secondly, instead of Ricci flat
ones they considered Einstein space–times [4]. Later on Goenner discovered that Birkhoff’s theorem extends to even
more general ones than the Einstein space–times [7]. Actually, Goenner’s result was based on earlier developments:
on the classification of space–times by Petrov [12], and by Plebański [13], and on the study of those space–times
where an isometric action of a 3-dimensional Lie group with orbits of maximal dimension 2 exist [14]. The results of
Goenner were later on completed by Barnes [1].

It is to be noted that there is a presentation of Birkhoff’s theorem which concentrates on the fact that a spherically
symmetric space–time with vanishing Ricci tensor is locally isometric to the Schwarzschild space–time (see e.g. [8],
pp. 369–372). For a detailed account of the classical results concerning Birkhoff’s theorem see [16].

Actually, the approach adopted in case of the above mentioned generalizations can be summarized roughly as
follows: Let (M, 〈, 〉) be a space–time and

Φ : G × M → M
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the isometric action of a 3-dimensional Lie group G with non-lightlike orbits having maximal dimension 2. Since
Birkhoff’s original theorem yields a Killing field which is orthogonal everywhere to the orbits of the spherical action,
a generalized Birkhoff theorem has to yield a Killing field which is orthogonal to the orbits of Φ everywhere on M ;
such a Killing field will be called a Birkhoff field here. But as a Killing field is obtainable by solving the Killing
equation in coordinates, sufficient conditions for the solvability of this equation were given in terms of the Einstein
tensor of the space–time. Thus Birkhoff fields were obtained, at least locally. Yet, as was pointed out by Goenner, a
necessary and sufficient condition for the solvability of the Killing equation in terms of the Einstein tensor alone is not
likely to be achievable [7], and it seems now that no further work was done on the subject after this observation [10].
Thus the problem as to a complete account of those space–times where a generalization of Birkhoff’s theorem holds
remained open.

A new approach to the above problem is presented below. In fact, a recent study of the global geometry of
spherically symmetric space–times yields the following: If (M, 〈, 〉) is a spherically symmetric space–time then there
is an open and dense subset M∗

⊂ M , the so called principal part of M , such that under fairly general global conditions

M∗
= L ×% S2

holds, which means that M∗ is obtainable as a warped product of a 2-dimensional Lorentz manifold L and of a
2-sphere [17]. A necessary and sufficient condition for the validity of a generalized Birkhoff’s theorem in the case of
(M, 〈, 〉) is given in terms of the Lorentzian factor L and of the warping function % : L → R+. Thus a construction
of all those spherically symmetric space–times is obtained where a generalization of Birkhoff’s theorem holds. It is
also shown how the above mentioned earlier results are obtainable as simple consequences of the new one. Moreover,
such examples of spherically symmetric space–times are given which admit Birkhoff fields but are not covered by the
earlier results.

2. A construction of spherically symmetric space–times admitting a Birkhoff field

If (M, 〈, 〉) is a space–time, i.e. a 4-dimensional time-oriented connected Lorentz manifold, then an isometric action

Φ : SO(3)× M → M

is said to be spherical if the maximum of the dimension of its orbits is 2; in this case (M, 〈, 〉) is called a spherically
symmetric space–time ([8], pp. 369–372, [15], p. 261). Some fundamental results concerning the global geometry of
spherically symmetric space–times which were obtained earlier [17], and will be applied below, are summarized in
what now follows. A spherical action Φ obviously has no 1-dimensional orbits and the connected components of the
set of its 0-dimensional orbits are timelike geodesics which are called the axes of the action [17]. The 2-dimensional
orbits are spacelike compact submanifolds on which the Lorentz metric 〈, 〉 induces Riemannian metrics of positive
constant curvature. By an application of the theory of compact Lie group actions the 2-dimensional orbits can be
classified as principal and exceptional ones ([3], pp. 180–181); the union of the principal ones is a connected open
dense subset M∗ of M by the principal orbit type theorem ([3], pp 179–180), and accordingly M∗ is called the
principal part of M here. The restriction of Φ to the invariant set M∗ is obviously spherical. Put G = SO(3) for
convenience, and let G(z) ⊂ M be the orbit of z ∈ M∗ and T ⊥

z G(z) the normal space of the orbit at z. Then a smooth
involutive distribution

Nz = T ⊥
z G(z), z ∈ M∗

is obtained on the principal part. The maximal integral manifolds ofN are totally geodesic and are called the leaves of
the spherically symmetric space–time. If L ⊂ M∗ is a leaf then all the isotropy subgroups Gz ⊂ G = SO(3), z ∈ L ,
are the same. For each leaf L there is a unique closed totally geodesic submanifold P ⊂ M such that L ⊂ P and L
is open and dense in P; the closed totally geodesic submanifold P is called a transverse submanifold of the spherical
action. If a spherically symmetric space–time has an axis then this is included in all the transverse submanifolds of
the space–time. Consider S2

⊂ R3 as the unit sphere and let

Ψ : SO(3)× S2
→ S2

be the action obtained by restricting the canonical action of SO(3) on R3 to S2. Furthermore, as usual identify SO(2)
with the isotropy subgroup Ga ⊂ G = SO(3), where a = (1, 0, 0) ∈ S2. Let z ∈ M∗ be fixed so that the identity
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component of Gz is SO(2); since the identity components of the isotropy subgroups at points of M∗ yield a complete
conjugacy class of SO(2) in SO(3) this can be achieved. Consider the canonical equivariant diffeomorphisms

θ : S2
→ SO(3)/SO(2), χz : G(z) → G/Gz

and also the smooth equivariant covering map

κ : SO(3)/SO(2) → G/Gz .

Then there is a unique smooth covering map ωz which renders commutative the following diagram:

S2 ωz
−−−−→ G(z)

θ

y χz

y
SO(3)/SO(2)

κ
−−−−→ G/Gz .

The principal orbits of Φ are diffeomorphic to S2 if and only if the map ωz is a bijection, and then it is a homothety
with a factor ρ(z) ∈ R+. Thus in this case a smooth function

ρ : M∗
→ R

is obtained, which extends smoothly to M and is invariant under the action Φ. Let (M, 〈, 〉) be a spherically symmetric
space–time such that its principal orbits are diffeomorphic to S2; then

ρ : M∗
→ R+

is called its radial function. Spherically symmetric space–times can be fairly different from the global topological
point of view [5,18]; the ones which are the simplest in this respect are given as follows: A spherically symmetric
space–time is called normal if it satisfies the following three conditions:

1. M is oriented.
2. The spherical action Φ has no exceptional orbits.
3. The leaves are simply connected non-compact submanifolds.

In this case the principal orbits of Φ, being orientable, are diffeomorphic to S2 ([3], p. 185.)
The global geometry of normal spherically symmetric space–times admits the simplest approach. If (M, 〈, 〉) is a

normal spherically symmetric space–time and L ⊂ M∗ a leaf, then 〈, 〉 induces a Lorentz metric 〈, 〉L on L . Consider
also the restricted radial function % = ρdL; then the Lorentzian warped product

Q = L ×% S2

is a space–time with the time orientation inherited from M . Moreover, the canonical action Ψ of SO(3) on S2 extends
to an isometric action

Ψ̃ : SO(3)× (L ×% S2) → L ×% S2.

The fact, which is the starting point for the results presented here, is the existence of an isometry

Ξ : L ×% S2
→ M∗

which is equivariant with respect to the actions Ψ̃ , Φ [17]. Thus the principal part of a normal spherically symmetric
space–time which is likewise spherically symmetric can be obtained as a warped product.

Those Killing fields which are given by Birkhoff’s theorem and its generalizations are singled out by the following
definition in the case of spherically symmetric space–times.

Definition 1. Let (M, 〈, 〉) be a spherically symmetric space–time; a smooth vector field X : M → T M is called a
Birkhoff field if it satisfies the following two conditions:

(1) X is a non-trivial Killing field.
(2) If z ∈ M∗ and L is the leaf passing through z, then X (z) ∈ Tz L holds.
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A characterization of those spherically symmetric space–times which admit a Birkhoff field is presented
subsequently. First some basic concepts and facts concerning warped products are summarized which will be applied
in what follows.

Consider a warped product Q = L ×% S2 where L is a 2-dimensional Lorentz manifold; then its product manifold
structure yields the canonical projections

πL : Q → L , πS2 : Q → S2

which in turn give rise to canonical lifts of vector fields: If U ∈ T (L) then its canonical lift is the unique Ũ ∈ T (Q)
such that

TπL ◦ Ũ = U ◦ πL ,

Ũ (z, s) ∈ T(z,s)(L × {s}), (z, s) ∈ Q.

The set of such canonical lifts is a subspace L(L) ⊂ T (Q). If V ∈ T (S2), then its canonical lift is the unique
Ṽ ∈ T (Q) such that

TπS2 ◦ Ṽ = V ◦ πS2 ,

Ṽ (z, s) ∈ T(z,s)({z} × S2) ⊂ T(z,s)Q.

The set of such canonical lifts is a subspace L(S2) ⊂ T (Q) ([11], p. 205).
Following the usual terminology, tangent vectors

v ∈ T(z,s)(L × {s}), (z, s) ∈ Q

are called horizontal, and the tangent vectors

w ∈ T(z,s)({z} × S2)

are called vertical ([11], pp. 24–25).
A starting point for the subsequent results is a construction of those spherically symmetric space–times which

admit Birkhoff fields given by the following simple proposition.

Proposition 1. Let (L , 〈, 〉L) be a connected time-oriented 2-dimensional Lorentz manifold, S : L → T L its Killing
field, and % : L → R+ a smooth function which is a first integral of S. Then the spherically symmetric space–time
given by the warped product

Q = L ×% S2

with the time orientation induced by that of L admits a Birkhoff field X : Q → T Q which is given by

X = S̃ : Q → T Q

as the canonical lift of the Killing field S of (L , 〈, 〉L).

Proof. Since X is the canonical lift of S, it is smooth and its values, being horizontal, are tangent to the leaves. In
order to show that X is a Killing field, consider smooth vector fields Û , V̂ ∈ T (Q). Let gL , gS2 , g be respectively
the metrics of the factor manifolds and of the warped product. Then

(LX g)(Û , V̂ ) = X (g(Û , V̂ ))− g([X, Û ], V̂ )− g(Û , [X, V̂ ])

= X
(
gL(TπLÛ , TπL V̂ ) ◦ πL + (% ◦ πL) · gS2(TπS2Û , TπS2 V̂ ) ◦ πS2

)
−
(
gL(TπL [X, Û ], TπL V̂ ) ◦ πL + (% ◦ πL) · gS2(TπS2 [X, Û ], TπS2 V̂ ) ◦ πS2

)
−
(
gL(TπLÛ , TπL [X, V̂ ]) ◦ πL + (% ◦ πL) · gS2(TπS2Û , TπS2 [X, V̂ ]) ◦ πS2

)
holds for the Lie derivative of the warped product metric g.

1. If Û = Ũ , V̂ = Ṽ ∈ L(L) then the above expression reduces to the following one:

(LX g)(Ũ , Ṽ ) = X ((gL(U, V )) ◦ πL)− (gL([S,U ], V )− gL(U, [S, V ])) ◦ πL

= (S(gL(U, V ))− gL([S,U ], V )− gL(U, [S, V ])) ◦ πL ,
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since by a basic result ([11], pp. 24–25) the equality TπL [X, Ũ ] = TπL [̃S,U ] = [S,U ] holds and for the same
reason TπL [X, Ṽ ] = [S, V ] is valid. But then the above expression is equal to 0, since S is a Killing field.

2. If Û = Ũ ∈ L(L), V̂ = Ṽ ∈ L(S2), then by the above expression of the Lie derivative of the warped product
metric

(LX g)(Ũ , Ṽ ) = 0

is obtained by the above already mentioned facts; namely [X, Ũ ] = [̃S,U ] and [X, Ṽ ] = [S̃, Ṽ ] = 0 by basic
properties of canonical lifts ([11], pp. 24–25).

3. If Û = Ũ , V̂ = Ṽ ∈ L(S2), then the above expression for the Lie derivative of the warped product metric, by
the already mentioned basic facts, reduces to the following one:

(LX g)(Ũ , Ṽ ) = X
(
(% ◦ πL) · (gS2(U, V ) ◦ πS2)

)
.

But X (% ◦ πL) = (S%) ◦ πL = 0, since % is a first integral of S. Moreover, gS2(U, V ) ◦ πS2 is constant on the leaves
and X is tangent to the leaves; therefore X (gS2(U, V ) ◦ πS2) = 0 holds. Consequently, the above expression is equal
to 0.

Since LX g is a tensor, and as any tangent vector of Q = L ×% S2 is obtainable as a linear combination of values of
canonical lifts, the proposition follows. �

The following lemma serves to show that the conditions of the preceding proposition are also necessary for the
existence of a Birkhoff field.

Lemma 1. Let (L , 〈, 〉L) be a 2-dimensional time-oriented Lorentz manifold, and X : Q → T Q be a Birkhoff field
of the spherically symmetric space–time Q = L ×% S2 and L identified with a leaf of Q. Then S = XdL is a Killing
field of L and S% = 0 holds.

Proof. The fact that S is a Killing field of L follows from the fact that L ⊂ Q is totally geodesic (for a proof of the
corresponding general theorem in the not essentially Riemannian case, see e.g. [9], vol. II, pp. 59–60). Let g be the
Lorentz metric of Q, then for U ∈ T (S2) and its canonical lift Ũ ∈ T (Q) the following holds:

0 = (LX g)(Ũ , Ũ ) = X (g(Ũ , Ũ ))− g([X, Ũ ], Ũ )− g(Ũ , [X, Ũ ])

= X ((% ◦ πL)gS2(U,U )πS2)

= (X (% ◦ πL)) gS2 + % ◦ πL X (gS2(U,U ) ◦ πS2)

= (S%) ◦ πL(gS2(U,U ) ◦ πS2),

since gS2(U,U )πS2 is constant on the leaves and X is tangent to the leaves. �

In order to show that the conditions of the preceding proposition are also sufficient for the existence of a Birkhoff
field in a normal spherically symmetric space–time (M, 〈, 〉), assume that there is a leaf L ⊂ M , a smooth function
% : L → R+ and a Killing field S : L → T L such that S% = 0 is valid. Then the canonical lift X = S̃ : Q → T Q is
a Birkhoff field of the spherically symmetric space–time

Q = L ×% S2

by the preceding proposition. But then by the identification M∗
= Q the canonical lift X is a Birkhoff field also of

the spherically symmetric space–time M∗. If M 6= M∗ then M = A ∪ M∗ where A is the axis of the space–time since
this is normal [17]. But then X obviously extends to a Birkhoff field X̂ of M on putting X̂dA = 0.

3. A necessary and sufficient condition for the existence of a Birkhoff field in terms of the radial function

The construction of a Birkhoff field of a spherically symmetric space–time given by the preceding Proposition 1
is based on some conditions which concern the geometry of a leaf as a 2-dimensional Lorentz manifold; actually the
existence of such a Killing field of this 2-dimensional Lorentz manifold is required which leaves the restricted radial
function invariant. In what follows, these geometric conditions are replaced by other, analytic, ones which concern
only the restricted radial function. In this way it will be possible to answer the question as to the role of the Ricci
tensor of a spherically symmetric space–time in assuring the existence of a Birkhoff field.
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Lemma 2. Let (L , 〈, 〉L) be a 2-dimensional Lorentz manifold and % : L → R a smooth function. Then

grad 〈grad %, grad %〉L = 2∇
L
grad %grad %

holds for the gradient of the smooth function 〈grad %, grad %〉 where ∇
L is the Levi-Cività covariant derivation.

Proof. Let V be a smooth local vector field; then

V 〈grad %, grad %〉L = V ((grad %)%) = [V, grad %]% + grad %(V%)

= 〈(∇L
V grad % − ∇

L
grad %V ), grad %〉L + 〈∇

L
grad %V, grad %〉L + 〈V,∇grad %grad %〉

=
1
2

V 〈grad %, grad %〉L + 〈V,∇L
grad %grad %〉L

holds and yields the assertion of the lemma. �

Theorem 1. Let (M, 〈, 〉) be a normal spherically symmetric space–time, L ⊂ M a leaf, % = ρdL : L → R+ the
corresponding restricted radial function and %(L) = (α, ω) where 0 ≤ α < ω ≤ ∞. Then the space–time admits a
Birkhoff field if and only if

〈grad %, grad %〉L = φ ◦ %,

1% = ψ ◦ %

holds with smooth functions φ, ψ : (α, ω) → R for the gradient and Laplacian of % calculated in the Lorentz
manifold (L , 〈, 〉L).

Proof. In order to show that the conditions of the theorem are necessary consider a Birkhoff field X : M → T M and
its restriction S = XdL which is a Killing field of (L , 〈, 〉L) as already mentioned above. It will be shown first that
the following equalities are valid:

S% = 〈S, grad %〉L = 0,

LSgrad % = 0,

S1% = 0.

In order to verify the first equality observe that M∗ can be identified with L ×% S2 by the equivariant isometry Ξ , and
thus the first equality is a simple consequence of the preceding Lemma 1.

In order to verify the second equality observe that the zero set of S is nowhere dense in L since S is a non-trivial
Killing field there. Consider now a z ∈ L such that S(z) 6= 0 and a u ∈ Tz L − {0z}. Then there is a smooth local
vector field U defined on a neighbourhood of z in L and such that

1. U (z) = u is valid,
2. U is tangent to L ,
3. [S,U ] = 0 holds; in fact. there is a coordinate system on a neighbourhood of z such that U is a base field. Now

the following holds:

〈u,LSgrad %(z)〉L = (〈U,LSgrad %〉L)(z)

= ((S〈U, grad %〉L)− 〈[S,U ], grad %〉L) (z) = S(U%)

= (S(U%)− U (S%))(z) = ([S,U ]%)(z) = 0.

Since u ∈ Tz L is arbitrary, this implies that LSgrad % = 0 is valid.
In order to verify the third equality put Y = grad %; then

1% = div grad % = div Y
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by a definition of the Laplacian ([11], p. 86). Let now υ ∈ Ω2(L) be the canonical volume form of the Lorentz
manifold (L , 〈, 〉L). Then by a fundamental property of the divergence ([11], pp. 195–196) the following holds:

LYυ = (div Y )υ,

LSLYυ = (S(div Y ))υ + (div Y )LSυ,

L[S,Y ]υ + LYLSυ = (S(div Y ))υ,

0 = (S(div Y ))υ,

since LSυ = 0 and [S, Y ] = LSgrad % = 0 is valid. But then S(1%) = 0 follows.
In consequence of the preceding Lemma 2 the following is obtained:

S〈grad %, grad %〉L = 〈S, 2∇
L
grad %grad %〉L

= 2{grad %〈S, grad %〉L − 〈∇
L
grad %S, grad %〉L} = −2〈∇

L
grad %S, grad %〉L

= 2〈LSgrad % − ∇
L
S grad %〉L = 2〈ASgrad %, grad %〉L = 0

by above already established equalities and by the fact that since S is a Killing field of (L , 〈, 〉L), the endomorphism
AS = LS − ∇

L
S is skew-symmetric.

According to Lemma 3 below the level sets of % are diffeomorphic to R. Furthermore S% = 0 implies that S is
tangent to level lines of %. But then S〈grad %, grad %〉L = 0 implies that a level set of 〈grad %, grad %〉L is obtainable
as a union of level lines of %. Therefore the existence of a smooth function φ : R+

→ R such that

〈grad %, grad %〉 = φ ◦ %

follows by the implicit function theorem.
Since S1% = 0 is valid by a preceding calculation, an obvious similar argument yields that

1% = ψ ◦ %

holds with a smooth function ψ : R+
→ R.

In order to show that the conditions of the theorem are sufficient as well assume now that functions φ, ψ satisfying
those conditions exist. Then there is a Killing field S : L → T L of the 2-dimensional Lorentz manifold (L , 〈, 〉L)

according to Theorem 3 below. Moreover, the canonical lift S̃ ∈ L(L) is a Birkhoff field by Proposition 1. But then S̃
yields a Birkhoff field X∗ on M∗ by the equivariant isometry Ξ : M∗

→ L ×% S2. Since M is a normal spherically
symmetric space–time, either M = M∗ or M = A ∪ M∗ holds where A is an axis [17]. But then X∗ extends uniquely
to a Killing field X of M which is obviously a Birkhoff field as well. �

4. The existence of Birkhoff fields and the Ricci tensor

Those results concerning the generalization of Birkhoff’s theorem which were obtained up to now were achieved by
imposing some conditions on the Einstein tensor. It seems therefore justified to discuss the question of what bearings
those necessary and sufficient conditions which were presented here above have on the Einstein tensor. Considering
that the Einstein gravitational tensor G of a space–time is given by the Ricci form r and the scalar curvature S as
follows:

G = r −
1
2

Sg,

the above problem can be formulated in terms of the Ricci form r alone.
Let (M, 〈, 〉) be a normal spherically symmetric space–time, z ∈ M∗ and L ⊂ M∗ the leaf passing through z; then

the orthogonal direct sum decomposition

Tz M = Tz L
⊥

⊕ TzG(z)

holds. Consider now the Ricci form rz : Tz M × Tz M → R and the Ricci endomorphism Rz : Tz M → Tz M of M ;
then the equality

rz(u, v) = 〈Rzu, v〉 = 0, u ∈ Tz L , v ∈ TzG(z),
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holds by an expression for the Ricci form of warped products ([11], pp. 210–211), since M∗ is canonically identified
with Q = L ×% S2 as before. Consequently, the inclusions

Rz(Tz L) ⊂ Tz L , Rz(TzG(z)) ⊂ TzG(z)

hold. Therefore, if s ∈ Tz M is an eigenvector of the Ricci endomorphism Rz and

s = sL + sG(z), sL ∈ Tz L , sG(z) ∈ TzG(z)

its corresponding decomposition, then sL , sG(z) are obviously eigenvectors of Rz as well, with eigenvalues equal to
that of s. Consider now the restriction

RzdTzG(z) : TzG(z) → TzG(z),

of the Ricci endomorphism. Since TzG(z) is a spacelike subspace, the restricted Ricci endomorphism being symmetric
has an eigenvector. But as Rz is equivariant with respect to the linear isotropy representation which now acts
transitively on the set of unit vectors in TzG(z), each non-zero vector in TzG(z) is an eigenvector of Rz and they
have the same eigenvalue λz .

Definition 2. The non-zero vectors v ∈ TzG(z) will be called the trivial eigenvectors and their common eigenvalue
λz the trivial eigenvalue of the Ricci endomorphism.

Assume as above that the spherically symmetric space–time is normal, fix a leaf L ⊂ M∗, and identify the principal
part M∗ with the warped product

Q = L ×% S2.

Let now r L be the Ricci form of L and r̃ L its pull back by πL . If X, Y ∈ T (Q) are horizontal valued then

r(X, Y ) = r̃ L(X, Y )−
2

% ◦ πL
h̃%(X, Y )

holds where h̃% is the pull back of the Hesse form h% of % by πL ([11], pp. 210–211). But for Ricci form r L and the
sectional curvature κL of L the following holds:

r L(X ′Y ′) = κL
〈X ′, Y ′

〉L , X ′, Y ′
∈ T (L).

Consequently, for the Ricci endomorphism R of Q, for the lift R̃L of the Ricci endomorphism RL of L and for the lift
H̃% of the Hesse endomorphism H% associated with h% (for the lift of these endomorphisms see e.g. [11], p. 21) the
following holds:〈

R X, Y 〉 = 〈κL
◦ πL · X −

2
% ◦ πL

H̃%X, Y

〉
,

where X, Y are horizontal valued. Furthermore, if U, V ∈ T (Q) are vertical valued then the following holds:

r(U, V ) = r̃S2
(U, V )− 〈U, V 〉

(
1%

%
+

〈grad %, grad %〉L

%2

)
◦ πL

where r̃S2 is the lift of the Ricci form of S2 by πS2 and 1% is the Laplacian ([11], pp. 210–211). Considering the
expression for the Ricci form rS

2
by the sectional curvature κS

2
= 1 of the unit sphere, the following is obtained for

the Ricci endomorphism R of Q and for the lift of the Ricci endomorphism of S2 by πS2 :

〈RU, V 〉 =

〈(
1 −

(
1%

%
−

〈grad %, grad %〉L

%2

)
◦ πS2

)
U, V

〉
,

where U, V are vertical valued. Subsequently the smooth vector field Z : L → T L will be also applied which is
defined as follows:

〈grad %(z), Z(z)〉L = 0, ‖Z(z)‖ = 1

for z ∈ L and the ordering (grad %(z), Z(z)) defines the same orientation of L for each z ∈ L .
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The following proposition shows now what restrictions the existence of a Birkhoff field imposes on the Ricci
endomorphism of a spherically symmetric space–time.

Proposition 2. Let (M, 〈, 〉) be a normal spherically symmetric space–time, L ⊂ M∗ a leaf, % = ρdL the restricted
radial function and %(L) = (α, ω), 0 ≤ α < ω ≤ ∞. Then the following hold:
(1) There is a smooth function φ : (α, ω) → R such that

〈grad %, grad %〉L = φ ◦ %

holds if and only if grad %(z) ∈ Tz L is an eigenvector of the Ricci endomorphism RL
z for z ∈ L.

(2) If grad %(z) is an eigenvector of the Ricci endomorphism RL
z then it is also eigenvector of the Hesse

endomorphism H%z with the eigenvalue

1
2
ε(grad %) · (φ′

◦ %) · (φ ◦ %)(z), z ∈ L .

(3) Let grad %(z) be an eigenvector of the Hesse endomorphism H%z at each z ∈ L. Then there is a smooth function
ψ : (α, ω) → R such that

1% = ψ ◦ %

is valid, if and only if the eigenvalue of the eigenvector Z(z) of the Hesse endomorphism H%z is a function of %.

Proof. (1) Observe first that in consequence of an expression for the Ricci endomorphism R above, g̃rad % yields an
eigenvector of R if and only if it is an eigenvector of the lift H̃% of the Hesse endomorphism associated with %.

Assume first that there is a smooth function φ such that

〈grad %, grad %〉L = φ ◦ %

holds. Then with the above already defined smooth vector field Z : L → T L the following holds:

〈H%(grad %), Z〉L = 〈H%(Z), grad %〉L = 〈∇
L
Z grad %, grad %〉L

=
1
2

Z〈grad %, grad %〉L =
1
2

Z(φ ◦ %) =
1
2
(φ′

◦ %)〈Z , grad %〉 = 0.

Therefore grad % is an eigenvector of the Hesse endomorphism H% associated with %. But then g̃rad % is an eigenvector
of the Ricci endomorphism Rz as well.

Assume conversely that g̃rad % is an eigenvector of the Ricci endomorphism. Then by the preceding calculation

Z〈grad %, grad %〉L = 0

holds and therefore any level set of 〈grad %, grad %〉 is a union of level lines of %. But from this fact the existence of
the smooth function φ follows as was shown already above.

(2) Assume now that g̃rad % is an eigenvector of the Ricci endomorphism; then grad % is an eigenvector of the
Hesse endomorphism and its corresponding eigenvalue is given by

λgrad % =

〈
H%

grad %
‖grad %‖

,
grad %

‖grad %‖

〉
L

=
1

‖grad %‖2 〈∇grad %grad %, grad %〉L

=
1

‖grad %‖2

1
2

grad %〈grad %, grad %〉L =
1

2‖grad %‖2 (grad %)(φ ◦ %)

=
1

2‖grad %‖2 · (φ′
◦ %) · 〈grad %, grad %〉L =

1
2
ε(grad %) · (φ′

◦ %) · (φ ◦ %),

where ‖grad %‖ 6= 0 was assumed as above, but ε(grad %) = ±1 is admitted.
(3) Since 1% can be expressed by means of the eigenvalues of the Hesse endomorphism H% ([11], pp. 86–87), the

Laplacian 1% is a function of % if and only if the eigenvalue of the eigenvector Z of H% is a function of % under the
given assumptions. �
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The earlier results of Cahen and Debever [4], Goenner [7], and of Barnes [1] on generalization of Birkhoff’s
theorem were summarized in terms of the Segré symbol ([10], pp. 157–158). The Segré symbol of a Ricci
endomorphism is a sequence of natural numbers which give the multiplicities of the elementary divisors of the
endomorphism displayed in such an order that the multiplicities of those elementary divisors which correspond to
eigenvalues of spacelike eigenvectors precede those which correspond to eigenvalues of lightlike and timelike ones and
are separated by a comma from them; moreover, multiplicities of elementary divisors which correspond to the same
eigenvalue are enclosed in brackets ([10], pp. 66–89). A concise account of the earlier generalizations of Birkhoff’s
theorem is now as follows ([10], pp. 157–158):

Theorem 2 (Cahen and Debever, Goenner, Barnes). Let (M, 〈, 〉) be a space–time where an isometric action of a
3-dimensional Lie group with non-lightlike orbits of maximal dimension 2 is given. If the Segré symbol of Ricci tensor
of the space–time is [(111, 1)] or [(11)(1, 1)] then the action extends to an isometric action of a 4-dimensional Lie
group with non-lightlike orbits of maximal dimension 3.

The Segré symbol [(111, 1)] corresponds to a Ricci tensor with one eigenvalue of multiplicity 4; this is the case
of an Einstein manifold, while [(11)(1, 1)] corresponds to a Ricci tensor with two eigenvalues of multiplicity 2 each.
In the case of a spherically symmetric space–time with Segré symbol [(111, 1)] or [(11)(1, 1)] the first two elements
of the symbol obviously correspond to the trivial eigenvalue of eigenvectors in TzG(z), while the third and the fourth
element correspond to an eigenvalue of eigenvectors in Tz L .

Proposition 3. Let (M, 〈, 〉) be a normal spherically symmetric space–time such that for z ∈ M∗ the Ricci tensor has
the Segré symbol [(111, 1)] or [(11)(1, 1)]. Then the space–time admits a Birkhoff field.

Proof. In fact, the given values of the Segré symbol and preceding observations yield that there are at least two
eigenvectors of the Ricci endomorphism in Tz L having the same eigenvalue. But then each non-zero vector in Tz L is
an eigenvector of the Ricci endomorphism; in particular grad % yields an eigenvector as well. Therefore the preceding
Proposition 2 applies and the existence of the required function φ follows. Moreover, since 1% can be expressed
in terms of the eigenvalues of the Hesse endomorphism H%, and these eigenvalues are equal, and, furthermore,
their common value is a function of % by the preceding Proposition 2, the existence of the required function ψ
also follows. �

5. A construction of spherically symmetric space–times admitting a Birkhoff field

Some spherically symmetric space–times are constructed below which admit a Birkhoff field but do not satisfy
those above presented conditions which were used in earlier generalizations of Birkhoff’s theorem. The construction
is based on the sufficient conditions given in Proposition 1 already here.

Consider the 1-dimensional Lorentz manifold R1
1 obtained from R1 by multiplying its metric with −1 and consider

a smooth function

µ : R1
1 → R+.

Then the Lorentzian warped product

L = R1
1 ×µ R1

is a 2-dimensional simply connected non-compact Lorentz manifold. There is a canonical global coordinate system
(u, v) on L defined by its product structure. For the corresponding base fields

〈∂u, ∂u〉L = −1, 〈∂u, ∂v〉L = 0, 〈∂v, ∂v〉L = µ2

holds. Then the timelike vector field ∂u defines a time orientation of L; moreover, ∂v is obviously a Killing field on L .
Let now

% : L → R+

be a smooth function such that ∂v% = 0 holds; then there is a smooth function %̂ : R → R such that

%(z) = %̂ ◦ u(z), z ∈ L
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holds, and conversely. Now the warped product

Q = L ×% S2

yields a spherically symmetric space–time with the time orientation induced by that of L and Q admits a Birkhoff
field by Proposition 1 above.

In order to see that the above space–time Q does not satisfy those conditions which were used in earlier
generalizations of Birkhoff’s theorem, the Ricci endomorphism of Q will be calculated subsequently.

An obvious calculation yields that

grad % =
∂%̂

∂u
∂u

holds, and accordingly it is also assumed that ∂%̂
∂u is nowhere 0 on L .

Then for the Hessian form h% the following is obtained:

h%(∂u, ∂u) = 〈∇
L
∂u

grad %, ∂u〉L = ∂u〈grad %, ∂u〉L − 〈grad %,∇L
∂u
∂u〉L

= −∂u
∂%̂

∂u
=
∂2%̂

∂u2 ,

and, in fact, the field ∂u has unit norm and therefore ∇∂u∂u ⊥ ∂u, grad % is valid. Moreover,

h%(∂u, ∂v) = 〈∇
L
∂u

grad %, ∂v〉L = ∂u〈grad %, ∂v〉L − 〈grad %,∇L
∂u
∂v〉L

= −
∂%

∂u
〈∂u,∇

L
∂u
∂v〉L = −

∂%̂

∂u
〈∂u,∇

L
∂v
∂u〉L = 0

is valid too. Thus ∂U , ∂v are eigenvectors of the Hesse endomorphism H%. Furthermore,

h%(∂v, ∂v) = 〈∇∂vgrad %, ∂v〉L = ∂v〈grad %, ∂v〉L − 〈grad %,∇∂v∂v〉L

= −
∂%̂

∂u
〈∂u,∇∂v∂v〉L = −

∂%̂

∂u
(∂v〈∂u, ∂v〉L − 〈∇∂v∂u, ∂v〉L)

= −
∂%̂

∂u

(
−〈∇∂u∂v, ∂v〉L

)
=
∂%̂

∂u

1
2
∂u〈∂v, ∂v〉L

=
∂%̂

∂u

1
2
∂u(µ

2) =
∂%̂

∂u

∂µ

∂u
µ.

holds. The Laplacian1% can be also obtained now by the fact that it is the divergence of the field grad % and therefore
it is obtainable as the sum of the values of the Hessian form h% on an orthonormal system ([11], pp. 86–87):

1% = ε(∂u)〈∇
L
∂u

grad %, ∂u〉L +
1

‖∂v‖2 ε(∂v)〈∇
L
∂v

grad %, ∂v〉L

= (−1)
∂2%̂

∂u2 +
1

µ2

∂%̂

∂u

∂µ

∂u
µ.

The sectional curvature κL of L is obtained by application of a general formula of the sectional curvature of a
2-dimensional semi-Riemann manifold in a coordinate system with orthogonal coordinate lines ([11], pp. 80–81). In
fact, put

E = 〈∂u, ∂u〉L = −1, G = 〈∂v, ∂v〉L = µ2,

e = |E |
1/2

= 1, g = |G|
1/2

= µ, ε1 = −1, ε2 = 1.

κL
=

−1
eg

(
ε1

(gu

e

)
u

+ ε2

(
ev
g

)
v

)
=

−1
1 · µ

(
(−1)

(
∂µ
∂u

1

)
u

+ 1
(

0
µ

)
v

)
=

1
µ

∂2µ

∂u2 .
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The eigenvalues of the Ricci endomorphism R of the above space–time M = L ×% S2 are the following:

1
µ

∂2µ

∂u2 +
∂2%̂

∂u2 ,

1
µ

∂2µ

∂u2 +
∂%̂

∂u

∂µ

∂u
µ,

1 −
1
%

(
−
∂2%̂

∂u2 +
1
µ

∂%̂

∂u

∂µ

∂u

)
−

1

%2

(
∂%̂

∂u

)2

.

As the above expressions of the eigenvalues of the Ricci endomorphism show, the validity of the conditions for
the existence of a Birkhoff field given earlier are not fulfilled in general in the case of those spherically symmetric
space–times which were constructed here.

Appendix. A solution of the global Lorentzian Minding problem

The solution of the Minding problem of classical surface theory yields a sufficient condition for the existence of
a Killing field on a surface in terms of a function which has to be invariant under the Killing field; such a function
can be the Gaussian curvature considering the theorema egregium (see e.g. [19], vol. II, pp. 85–87, 220–228). The
analogous global version of the Minding problem on a 2-dimensional Lorentz manifold is solved in what follows.

Lemma 3. Let % : R2
→ R be a smooth function such that d% is nowhere 0 on R2. Then the level sets of % are

diffeomorphic to R.

Proof. If N is a level set of % then it is locally diffeomorphic to R since d% 6= 0 everywhere on R2. Therefore a
connected component C of N is diffeomorphic either to R or to the circle S1. Assume that C is diffeomorphic to S1;
then C = ∂D, where D ⊂ R2 is a disk. But then % has an extremal value in D and there d% = 0, a contradiction.

Assume that C, C ′
⊂ N are two connected components of N , and consider a smooth curve ϕ : [0, 1] → R2 with

ϕ(0) ∈ C, ϕ(1) ∈ C ′. There is no loss of generality in assuming that each τ ∈ [0, 1] has a neighbourhood where ϕ
intersects a level set of % at most once. But there is a τ0 ∈ (0, 1) where % ◦ϕ has an extremal value and therefore there
are τ ′ < τ0 < τ ′′ arbitrary near to τ0 with % ◦ ϕ(τ ′) = % ◦ ϕ(τ ′′), a contradiction. �

Theorem 3. Let (L , 〈, 〉) be a 2-dimensional simply connected non-compact Lorentz manifold and % : L → R a
smooth function such that ‖grad %‖ is nowhere 0 on L; put %(L) = (α, ω) where 0 ≤ α < ω ≤ ∞. Then the following
assertions are valid:
(1) Assume that there is a smooth function φ : (α, ω) → R such that

〈grad %, grad %〉 = φ ◦ %

holds. Then the integral curves of grad % are pregeodesics. Furthermore, there is a smooth function ς : L → R such
that

L 3 z 7→ (%(z), ς(z)) ∈ (α, ω)× R ⊂ R2

is a smooth coordinate system on L with orthogonal coordinate lines.
(2) Assume that there is a smooth function ψ : (α, ω) → R such that

1% = ψ ◦ %

holds for the Laplacian of %. Then there is a Killing field S : L → T L of the Lorentz manifold L such that S% = 0 is
valid everywhere on L.

Proof. (1) Assume the existence of the function φ : (α, ω) → R with the above given property. Then by the former
Lemma 2

2∇grad %grad % = grad 〈grad %, grad %〉

= grad (φ ◦ %) = (φ′
◦ %) · grad %

holds which means that the integral curves of grad % are pregeodesics.
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Consider now the smooth vector field R : L → T L defined as follows:

R : L 3 z 7→
grad %

〈grad %, grad %〉

and also the maximal local 1-parameter group of diffeomorphisms generated by R, which is a smooth map

Γ : U → L

where U ⊂ R × L is a neighbourhood of the set {0} × L such that

U ∩ (R × {z}) = (ξz, ηz)× {z}

holds for z ∈ L with −∞ ≤ ξz < ηz ≤ ∞, and that

γz = Γ d((ξz, ηz)× {z})

is the maximal integral curve of R with γz(0) = z (see e.g. [6], pp. 99–104).
Consider now the smooth function % ◦ γz : (ξz, ηz) → (α, ω) for z ∈ L . Then

d
dτ
(% ◦ γz) = γ̇z% = 〈γ̇z, grad %〉 = 〈R, grad %〉 = 1

holds. Therefore

α < % ◦ γz(τ ) = %(z)+ τ < ω

is valid. Even the equalities

α = %(z)+ ξz < %(z)+ ηz = ω

hold, considering that the integral curve γz is maximal. Fix now a θ ∈ (α, ω); then by the preceding Lemma 3 the
1-dimensional submanifold

A = %−1(θ)

is diffeomorphic to R and therefore there is a smooth diffeomorphism

ς0
: A → R

which can be reparametrized so as to be an isometry or an anti-isometry depending on whether A is spacelike or
timelike. Then, by basic properties of integral curves of smooth vector fields, any point z ∈ L is obtainable as

z = Γ (τ, x)

where τ ∈ (α − θ, ω − θ) and x ∈ A are unique and depend smoothly on z. Thus a smooth function

ς : L → R

is defined by ς(z)= ς0(x). Consequently a smooth coordinate system is obtained on L by

L 3 z 7→ (%(z), ς(z)) ∈ (α, ω)× R,

where the coordinate lines are obviously orthogonal.
(2) Assume now the existence of a smooth function ψ : (α, ω) → R with the given property. Consider the smooth

vector field

E : L 3 z 7→
grad %

‖grad %‖
.

Then E(z) is an eigenvector of the Hesse endomorphism H%z : Tz L → Tz L for z ∈ L . Namely, there is a unique
smooth vector field N : L → T L such that

‖N (z)‖ = 1, 〈N (z), E(z)〉 = 0
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holds for z ∈ L and the ordering (E(z), N (z)) defines the same orientation of L for every z ∈ L . Then

〈H%E, N 〉 = h%(E, N ) = 〈∇E grad %, N 〉

= E〈grad %, N 〉 − 〈grad %,∇E N 〉 = 0

is valid; in fact, the integral curves of E are geodesics and N is parallel along these curves. In order to calculate the
eigenvalue of the eigenvector E observe that

〈H%E, E〉 = h%(E, E) = 〈∇E grad %, E〉

= E〈grad %, E〉 − 〈grad %,∇E E〉

= E

(
1

‖grad %‖
〈grad %, grad %〉

)
= E

(
1

|φ ◦ %|1/2
· (φ ◦ %)

)
= E(ε(grad %) · (φ ◦ %)1/2) = ε(grad %) ·

1
2
(φ ◦ %)−1/2

· (φ′
◦ %) · 〈E, grad %〉

=
1
2
ε(grad %)(φ ◦ %)−1/2

· (φ′
◦ %) · ε(grad %)(φ ◦ %)1/2

=
1
2
φ′

◦ %.

The above equality yields that the eigenvalue of the Hesse endomorphism H% corresponding to E is a function of %.
But the facts that 1% is a function of % and that 1% is obtainable as sum of eigenvalues of the Hesse endomorphism
H% imply that the eigenvalue of H% corresponding to the eigenvector N is given by λN ◦ % as a function of % as well.
Consequently,

0 = N 〈N , grad %〉 = 〈∇N N , grad %〉 + 〈N ,∇N grad %〉

= 〈∇N N , grad %〉 + 〈H%N , N 〉

yields that 〈∇N N , grad %〉 too is a function of %.
It will be shown now that ∂ς 〈∂ς , ∂ς 〉 = 0 holds everywhere on L . In fact

∂%∂ς 〈∂ς , ∂ς 〉 = ∂ς∂%〈∂ς , ∂ς 〉 = 2∂ς 〈∇∂%∂ς , ∂ς 〉 = 2∂ς 〈∇∂ς ∂%, ∂ς 〉

= 2∂ς

〈
∇∂ς

(
1

φ ◦ %
grad %

)
, ∂ς

〉
= 2∂ς

(
1

φ ◦ %
〈∇∂ς grad %, ∂ς 〉

)
= 2

1
φ ◦ %

∂ς 〈∂ς , ∂ς 〉〈∇N grad %, N 〉 =
2λN

φ
◦ % · ∂ς 〈∂ς , ∂ς 〉.

But by the preceding calculations the following must be valid on L:

∂ς 〈∂ς , ∂ς 〉 = (ξ ◦ ς) · (eη◦%),

where ξ : R → R is some smooth function and η : R → R is a smooth function such that

η′
=

2λN

φ

is valid. In fact,

∂%
(
(ξ ◦ %) · (eη◦%)

)
= (ξ ◦ %) · eη◦% · (η′

◦ %)〈∂%, grad %〉

= (ξ ◦ %) · eη◦% · (η′
◦ %)

holds. Considering the fact that

(∂ς 〈∂ς , ∂ς 〉)dA = 0,

is valid and that the exponential function is nowhere 0, the function ξ has to be identically zero. But this implies the
assertion.

In order to show that ∂ς is a Killing field put now 〈, 〉 = g for convenience. Since L∂ς g is a tensor, it is enough to
show that the equalities

(L∂ς )(∂%, ∂%) = (L∂ς )(∂%, ∂ς ) = (L∂ς g)(∂ς , ∂ς ) = 0
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are valid. In fact, the following equalities are valid by the preceding observations:(
L∂ς g

)
(∂%, ∂%) = ∂ς

(
g(∂%, ∂%)

)
= ∂ς

(
1

φ ◦ %

)
= 0,(

L∂ς g
)
(∂%, ∂ς ) = ∂ς (g(∂%, ∂ς )) = 0,(

L∂ς g
)
(∂ς , ∂ς ) = ∂ς (g(∂ς , ∂ς )) = 0. �
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